利志分享
fast_forward
view_headline
开发工具箱
go教程
clickhouse教程
kafka教程
python教程
shell教程
原创杂文
打赏
开发工具箱
go教程
clickhouse教程
kafka教程
python教程
shell教程
原创杂文
打赏
clickhouse入门
clickhouse概述
clickhouse安装和部署
clickhouse数据类型
clickhouse表引擎学习
clickhouse表引擎学习2
clickhouse的sql语法功能1-创建库,创建表等
clickhouse的sql语法2之select功能
clickhouse的sql语法3之alter和show功能
clickhouse的sql语法4之system的了解-查看当前实时连接数
clickhouse的sql语法5之账号授权功能
浅析Clickhouse的向量化执行
clickhouse时间日期函数详解-toDate,toDateTime,formatDateTime
clickhouse常用字符串函数-empty,length,lower,upper,substring,splitByString
clickhouse常用数组函数-arrayJoin,arraySort,arrayReverseSort,arrayReduce,arrayDistinct
clickhouse常用hash函数和类型转换函数,随机函数
clickhouse实战
clickhouse实现漏斗功能
clickhouse实现留存数和留存率计算
你想要的-提高统计clickhouse的查询效率,clickhouse物化视图的应用
剖析-clickhouse的复制表引擎重复数据无法写入问题
clickhouse分布式查询报错剖析-Double-distributed IN/JOIN subqueries is denied (distributed_product_mode = 'deny'
有料-clickhouse单机的增删查询实现方案和clickhouse分布式部署的增删查改实现方案
clickhouse的go客户端实现插入分布式clickhouse集群方式
分布式物化视图在clickhouse如何实现?
助你成为数据分析达人-带你透彻的了解clickhouse实现同比环比分析
如何在clickhouse中实现连续的时间,比如连续的天
第二篇:如何在clickhouse中实现连续的时间,比如连续的天
clickhouse中toDate和toDateTime不能处理1970年之前时间问题
分享clickhouse分布式集群CPU突然暴涨接近100%的问题查证和分析
clickhouse一个特殊的Inf类型数据引发的数据问题
clickhouse的MergeTree系列引擎ReplacingMergeTree和SummingMergeTree的深入理解
sql中多表组合笛卡尔积引发数据动态变化的问题
clickhouse之删除数据或更新数据无效的解决思路-mutations相关
clickhouse(20.3.10.75版本) Sql报错总结
clickhouse网络架构问题引发的:All connection tries failed,Attempt to read after eof,While executing Remote报错
clickhouse深入
深入了解clickhouse的索引查询过程
详解clickhouse的MergeTree引擎存储结构
Clickhouse如何分析sql查询计划完整指南
详解clickhouse分区目录的合并过程
目录
clickhouse入门
clickhouse概述
clickhouse安装和部署
clickhouse数据类型
clickhouse表引擎学习
clickhouse表引擎学习2
clickhouse的sql语法功能1-创建库,创建表等
clickhouse的sql语法2之select功能
clickhouse的sql语法3之alter和show功能
clickhouse的sql语法4之system的了解-查看当前实时连接数
clickhouse的sql语法5之账号授权功能
浅析Clickhouse的向量化执行
clickhouse时间日期函数详解-toDate,toDateTime,formatDateTime
clickhouse常用字符串函数-empty,length,lower,upper,substring,splitByString
clickhouse常用数组函数-arrayJoin,arraySort,arrayReverseSort,arrayReduce,arrayDistinct
clickhouse常用hash函数和类型转换函数,随机函数
clickhouse实战
clickhouse实现漏斗功能
clickhouse实现留存数和留存率计算
你想要的-提高统计clickhouse的查询效率,clickhouse物化视图的应用
剖析-clickhouse的复制表引擎重复数据无法写入问题
clickhouse分布式查询报错剖析-Double-distributed IN/JOIN subqueries is denied (distributed_product_mode = 'deny'
有料-clickhouse单机的增删查询实现方案和clickhouse分布式部署的增删查改实现方案
clickhouse的go客户端实现插入分布式clickhouse集群方式
分布式物化视图在clickhouse如何实现?
助你成为数据分析达人-带你透彻的了解clickhouse实现同比环比分析
如何在clickhouse中实现连续的时间,比如连续的天
第二篇:如何在clickhouse中实现连续的时间,比如连续的天
clickhouse中toDate和toDateTime不能处理1970年之前时间问题
分享clickhouse分布式集群CPU突然暴涨接近100%的问题查证和分析
clickhouse一个特殊的Inf类型数据引发的数据问题
clickhouse的MergeTree系列引擎ReplacingMergeTree和SummingMergeTree的深入理解
sql中多表组合笛卡尔积引发数据动态变化的问题
clickhouse之删除数据或更新数据无效的解决思路-mutations相关
clickhouse(20.3.10.75版本) Sql报错总结
clickhouse网络架构问题引发的:All connection tries failed,Attempt to read after eof,While executing Remote报错
clickhouse深入
深入了解clickhouse的索引查询过程
详解clickhouse的MergeTree引擎存储结构
Clickhouse如何分析sql查询计划完整指南
详解clickhouse分区目录的合并过程
clickhouse概述
阅读:13801
分享次数:0
ClickHouse全称是Click Stream,Data Warehouse,简称ClickHouse就是基于页面的点击事件流,面向数据仓库进行OLAP分析。ClickHouse是一款开源的数据分析数据库,由战斗民族俄罗斯Yandex公司研发的,Yandex是做搜索引擎的,就类似于Google,百度等。我们都知道搜索引擎的营收主要来源于流量和广告业务,所以搜索引擎公司会着重分析用户网路流量,像Google有Anlytics,百度有百度统计,那么Yandex就对应于Yandex.Metrica。ClickHouse就是在Yandex.Metrica下产生的技术。 clickhouse的核心特点: 1:mpp架构 支持大规模并行计算,每个节点存有对应的分区数据。 2:完善的dbms功能 DDL,DML,权限控制,数据备份与恢复,分布式管理 3:列式存储和数据压缩 对于clickhouse的性能提升,数据压缩起到了很大作用。对于列式存储来说。相同的字段存储在一起,类型一致,数据类似,更方便进行压缩。clickhouse支持LZ4和ZSTD等压缩算法。 4:向量化执行引擎 向量化执行就是利用CPU的SIMD命令,即用单条指令操作多条数据,通过数据并行来提高性能,原理就是在CPU寄存器层面实现数据的并行操作。 5:支持SQL查询 提供传统数据库的概念,如数据库、表、视图和函数等。ClickHouse完全可以使用SQL作为查询语言,让每个人都可以轻松用上大数据。 6:表引擎 表引擎是ClickHouse其中一个重要的特性,拥有合并树、内存、文件、接口和其他6大类等20多种引擎,满足我们生产中的不同场景,选择合适的引擎。 7:多主架构 ClickHouse则采用Multi-Master多主架构,集群中每个角色对等,客户端访问任意一个节点都能得到相同的效果。 8:支持实时查询和分布式查询 优缺点对比: 优点: ROLAP(关系型的联机分析处理,和它一起比较的还有OLTP联机事务处理,我们常见的ERP,CRM系统就属于OLTP) 在线实时查询 完整的DBMS(关系数据库) 列式存储(区别与HBase,ClickHouse的是完全列式存储,HBase具体说是列族式存储) 不需要任何数据预处理 支持批量更新 拥有完善的SQl支持和函数 支持高可用(多主结构,在后面的结构设计中会讲到) 不依赖Hadoop复杂生态(像ES一样,开箱即用) 缺点: 不支持事务(这其实也是大部分OLAP数据库的缺点) 不擅长根据主键按行粒度查询(但是支持这种操作) 不擅长按行删除数据(但是支持这种操作) 高性能查询对比: 在相同的服务器配置与数据量下,平均响应速度: Vertica的2.63倍(Vertica是一款收费的列式存储数据库) InfiniDB的17倍(可伸缩的分析数据库引擎,基于Mysql搭建) MonetDB的27倍(开源的列式数据库) Hive的126倍 MySQL的429倍 Greenplum的10倍 Spark的1倍 详情可在以下网址看到:https://clickhouse.tech/benchmark/dbms/ 推荐同学们学习一下大数据部分的clickhouse,后面clickhouse教程将为大家准备。 ------------
感觉本站内容不错,读后有收获?
attach_money
我要小额打赏,鼓励作者写出更好的教程
扫码关注公众号:talk_lizhi