利志分享
fast_forward
view_headline
开发工具箱
go教程
clickhouse教程
kafka教程
python教程
shell教程
原创杂文
打赏
开发工具箱
go教程
clickhouse教程
kafka教程
python教程
shell教程
原创杂文
打赏
clickhouse入门
clickhouse概述
clickhouse安装和部署
clickhouse数据类型
clickhouse表引擎学习
clickhouse表引擎学习2
clickhouse的sql语法功能1-创建库,创建表等
clickhouse的sql语法2之select功能
clickhouse的sql语法3之alter和show功能
clickhouse的sql语法4之system的了解-查看当前实时连接数
clickhouse的sql语法5之账号授权功能
浅析Clickhouse的向量化执行
clickhouse时间日期函数详解-toDate,toDateTime,formatDateTime
clickhouse常用字符串函数-empty,length,lower,upper,substring,splitByString
clickhouse常用数组函数-arrayJoin,arraySort,arrayReverseSort,arrayReduce,arrayDistinct
clickhouse常用hash函数和类型转换函数,随机函数
clickhouse实战
clickhouse实现漏斗功能
clickhouse实现留存数和留存率计算
你想要的-提高统计clickhouse的查询效率,clickhouse物化视图的应用
剖析-clickhouse的复制表引擎重复数据无法写入问题
clickhouse分布式查询报错剖析-Double-distributed IN/JOIN subqueries is denied (distributed_product_mode = 'deny'
有料-clickhouse单机的增删查询实现方案和clickhouse分布式部署的增删查改实现方案
clickhouse的go客户端实现插入分布式clickhouse集群方式
分布式物化视图在clickhouse如何实现?
助你成为数据分析达人-带你透彻的了解clickhouse实现同比环比分析
如何在clickhouse中实现连续的时间,比如连续的天
第二篇:如何在clickhouse中实现连续的时间,比如连续的天
clickhouse中toDate和toDateTime不能处理1970年之前时间问题
分享clickhouse分布式集群CPU突然暴涨接近100%的问题查证和分析
clickhouse一个特殊的Inf类型数据引发的数据问题
clickhouse的MergeTree系列引擎ReplacingMergeTree和SummingMergeTree的深入理解
sql中多表组合笛卡尔积引发数据动态变化的问题
clickhouse之删除数据或更新数据无效的解决思路-mutations相关
clickhouse(20.3.10.75版本) Sql报错总结
clickhouse网络架构问题引发的:All connection tries failed,Attempt to read after eof,While executing Remote报错
clickhouse深入
深入了解clickhouse的索引查询过程
详解clickhouse的MergeTree引擎存储结构
Clickhouse如何分析sql查询计划完整指南
详解clickhouse分区目录的合并过程
目录
clickhouse入门
clickhouse概述
clickhouse安装和部署
clickhouse数据类型
clickhouse表引擎学习
clickhouse表引擎学习2
clickhouse的sql语法功能1-创建库,创建表等
clickhouse的sql语法2之select功能
clickhouse的sql语法3之alter和show功能
clickhouse的sql语法4之system的了解-查看当前实时连接数
clickhouse的sql语法5之账号授权功能
浅析Clickhouse的向量化执行
clickhouse时间日期函数详解-toDate,toDateTime,formatDateTime
clickhouse常用字符串函数-empty,length,lower,upper,substring,splitByString
clickhouse常用数组函数-arrayJoin,arraySort,arrayReverseSort,arrayReduce,arrayDistinct
clickhouse常用hash函数和类型转换函数,随机函数
clickhouse实战
clickhouse实现漏斗功能
clickhouse实现留存数和留存率计算
你想要的-提高统计clickhouse的查询效率,clickhouse物化视图的应用
剖析-clickhouse的复制表引擎重复数据无法写入问题
clickhouse分布式查询报错剖析-Double-distributed IN/JOIN subqueries is denied (distributed_product_mode = 'deny'
有料-clickhouse单机的增删查询实现方案和clickhouse分布式部署的增删查改实现方案
clickhouse的go客户端实现插入分布式clickhouse集群方式
分布式物化视图在clickhouse如何实现?
助你成为数据分析达人-带你透彻的了解clickhouse实现同比环比分析
如何在clickhouse中实现连续的时间,比如连续的天
第二篇:如何在clickhouse中实现连续的时间,比如连续的天
clickhouse中toDate和toDateTime不能处理1970年之前时间问题
分享clickhouse分布式集群CPU突然暴涨接近100%的问题查证和分析
clickhouse一个特殊的Inf类型数据引发的数据问题
clickhouse的MergeTree系列引擎ReplacingMergeTree和SummingMergeTree的深入理解
sql中多表组合笛卡尔积引发数据动态变化的问题
clickhouse之删除数据或更新数据无效的解决思路-mutations相关
clickhouse(20.3.10.75版本) Sql报错总结
clickhouse网络架构问题引发的:All connection tries failed,Attempt to read after eof,While executing Remote报错
clickhouse深入
深入了解clickhouse的索引查询过程
详解clickhouse的MergeTree引擎存储结构
Clickhouse如何分析sql查询计划完整指南
详解clickhouse分区目录的合并过程
clickhouse的sql语法功能1-创建库,创建表等
阅读:956
分享次数:0
clickhouse创建数据库 create database my_clickhouse; clickhouse创建表 标准格式如下: CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster] ( name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1], name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2], ... ) ENGINE = engine [ON CLUSTER cluster] cluster是根据集群来名来确定的。 例子: create table test.test_summergetree ( id Int32 comment 'id', name String comment '名称', money Decimal32(2) COMMENT '工资', create_at DateTime comment '创建时间' ) engine = SummingMergeTree() order by id partition by toYYYYMM(create_at) primary key id sample by id TTL create_at + INTERVAL 1 MONTH DELETE; 创建分布式表 标准格式如下: CREATE TABLE IF NOT EXISTS all_hits ON CLUSTER cluster (p Date, i Int32) ENGINE = Distributed(cluster, database,table, sharding_key) 分布式引擎参数:服务器配置文件中的集群名,远程数据库名,远程表名,数据分片键(可选)。 下面是样例: CREATE TABLE test_summergetree_distributed ( `float` Nullable(Float64), `str` Nullable(String), `test` Nullable(Int64), `create_at` DateTime ) ENGINE = Distributed('default', 'test', 'test_summergetree', rand()) clickhouse插入数据 标准格式: INSERT INTO [db.]table [(c1, c2, c3)] VALUES (v11, v12, v13), (v21, v22, v23), ... 写入数据也可以通过select结果写入,例子如下: INSERT INTO [db.]table [(c1, c2, c3)] SELECT ... 写入性能问题: 在进行INSERT时将会对写入的数据进行一些处理,按照主键排序,按照月份对数据进行分区等。所以如果在您的写入数据中包含多个月份的混合数据时,将会显著的降低INSERT的性能。为了避免这种情况: 1. 数据总是以尽量大的batch进行写入,如每次写入100,000行。 2. 数据在写入ClickHouse前预先的对数据进行分组。 3. 数据总是被实时的写入性能会下降。 4. 写入的数据已经按照时间排序写入性能会下降。
感觉本站内容不错,读后有收获?
attach_money
我要小额打赏,鼓励作者写出更好的教程
扫码关注公众号:talk_lizhi